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Abstract Graphs are used in many fields of chemistry for codification and model
purposes. One of these fields is widely known under the acronym QSAR/QSPR,
i.e., quantitative structure–activity/structure–property relationships. In chemical graph
studies directed graphs, known as digraphs, i.e., graphs with a preferred direction, have
mainly been used to codify chemical reaction networks. Actually, digraphs, especially
directed acyclic graphs together with simple graphs, can be used to draw a meta-
language of thermodynamics that codifies rules and properties which can be used
to automatically derive many well-known, and less-known, thermodynamic relation-
ships.

Keywords Directed graphs · Simple graphs · Thermodynamic digraphs ·
Thermodynamic relationships

1 Introduction

“Science has its cathedrals, built by the effort of a few architects and of many workers.
In these loftier monuments of scientific thought a tradition has arisen whereby the
friendly usages of colloquial speech give way to a certain severity and formality. While
this may sometimes promote precise thinking, it more often results in the intimidation
of the neophyte.” These are some of the words that Gilbert Newton Lewis and Merle
Randall used to introduce their book on thermodynamics, which soon became the most
famous book on the subject [1]. Usually one of the aspects of thermodynamics that
overwhelms the neophyte, and also the skilled practitioner, is the number of mathe-
matical relations that are scattered throughout any book or paper on thermodynamics.
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Even if mathematics offers a wonderful shorthand for the precise formulation of well
standardized ideas, in thermodynamics it is not rare the feeling of a lack of a uni-
tary formalism that could encompass and order the many equations, which seem to
pop out from everywhere. The feeling that there must be a shorter and easier way to
derive and order the thermodynamic relationships can be traced back to the beginning
of the 20th century, when it was rationalized by a physicist of the caliber of Percy
William Bridgam (1882–1961, Nobel prize in 1946). In a paper published in 1914 [2]
Bridgman suggested how to encode by the aid of an algebraic method the 720 first
derivatives, encompassing three parameters (among a pool of ten fundamental param-
eters), and the 11,704,365,420 relations between the first derivatives. Bridgam’s rather
heavy method, was further developed and simplified by Shaw [3] and it is presented
in a synthetic and readable form in Appendix 6 of Ref. [1]. It is a method based on
mathematical functions known as Jacobians, and on a short-hand way to encode dif-
ferentials. This first attempt to draw a metalanguage of thermodynamics remained
nonetheless a curiosity. A metalanguage (in logic and linguistic) is a language used
to make statements about statements in another language, which is called the object
language. More broadly it can refer to any terminology used to discuss the language
itself (a written grammar for example).

It is told that Max Born (1882–1970, Nobel Prize in 1954) devised in 1929 a ‘pri-
vate’ geometrical method to check automatically the Maxwell relations during his
thermodynamic lectures. It should be told that Max Born contributed in a significant
way to the development of Carathéodory’s axiomatic thermodynamics [4]. The Max
Born method is reported by Callen [5], but it was known by Koenig [6] and by Tisza
[7], who have been students of Max Born. The Born method was further developed into
a diagrammatic method for thermodynamic relationship [8,9]. Recently, a straightfor-
ward diagrammatic pattern-based method [10–13] has been presented, while, nearly
concomitantly, two different vector-based methods have been proposed [14,15], which
can be considered a revival of the algebraic methods for short-hand notation in ther-
modynamics.

2 The digraph

In the following a metalanguage for thermodynamic relationships based on graphs
will be developed. Actually, the diagrammatic pattern-based method used geometric
tools that bear a resemblance with graphs and directed graphs. Graphs are, indeed,
interesting tools for representing a relation by the aid of a pictorial representation.
A directed graph, or digraph, consists of a set V of vertices (or nodes) together with
a set E of ordered pairs of elements of V called edges (or arcs). In a directed graph
a vertex is represented by a point, and each ordered pair is represented using an edge
with its direction indicated by an arrow. In the simple directed acyclic graph, x → y,
vertex x is called the initial vertex (or tail) of the edge (a, b), and vertex y is called
the terminal vertex (or head) of the edge. Vertex x is said to be adjacent to y and y is
said to be adjacent from x . The in-degree of a vertex, v, denoted by deg−(v), is the
number of edges with v as their terminal. The out-degree of v, denoted by deg+(v),
is the number of edges with v as their initial vertex. A vertex with a zero indegree
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Fig. 1 A directed graph with
three vertices and three directed
edges

a

b

c

is called a source (vertex x , since one can only leave it) and a vertex with a zero
outdegree is called a sink (vertex y, since one cannot leave it). A relation R on a set A
is represented by the digraph that has the elements of A as its vertices and the ordered
pair (a, b) as edges [where (a, b)∈ R]. In Fig. 1 is shown the digraph of the relation
R = {(a, b), (b, c), (c, a)} on the set {a, b, c}. In simple undirected graphs, instead,
edges have no direction (no arrow) and the degree of a vertex, denoted by deg(v),
is the number of edges incident with it. Isolated vertices have, in any type of graph,
deg+(v) = deg−(v) = deg(v) = 0 [16].

3 The thermodynamic digraphs

Two sets of eight fundamental thermodynamic quantities will be considered as the
vertices of two digraphs. The first set is the energy set, {A, G, H, U, P, S, T, V}, where
A is the Helmholtz function, G the Gibbs function, H the Enthalpy, U the internal
energy, P the pressure, S the entropy, T the temperature, and V the Volume. These
quantities build the Energy-digraph, or E-digraph (Fig. 2, left). These eight quantities
of the energy set build two subsets: an energy-dimensioned subset of four zero-degree
thermodynamic potentials, {A, G, H, U}, and a subset of their natural variables, {P, S,
T, V}, which are the one-degree (out and in) vertices of the E-digraph. The E-digraph
can be considered the digraph of the relation R = {A, G, H, U, (P, V ), (S, T )}.
Notice that multiplying either the source P and the sink V, or the source S and the sink
T an energy-dimensioned quantity is obtained (i.e., PV and ST). In this digraph the
thermodynamic labels of the zero-degree vertices are ordered clockwise (clockwise
rotations is here considered positive), while the labels of the natural variables have a
slanted ‘Z’ order.

The second set of eight quantities is the entropic set, {M1, M2, M3, S, P/T, U,
1/T, V}, where M denotes the Massieu entropic functions, which are useful in the
theory of irreversible thermodynamics and in statistical mechanics. These functions

Fig. 2 Left: the E-digraph;
right: the S-digraph
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were introduced by the French mineralogist François–Jacques Dominique Massieu in
1869 [5,12]. These eight quantities build the second digraph, the Entropy-digraph, or
S-digraph (Fig. 2, right). They can be arranged into two subsets, an entropy-dimen-
sioned subset of four zero-degree entropic functions {M1, M2, M3, S}, and a subset
of their natural variables, {P/T, U, 1/T, V}, which are the one-degree vertices of the
S-digraph. The S-digraph is the digraph of the relation R= {M1, M2, M3, S, (P/T, V),
(U, 1/T)}. Multiplying together the source V and the sink P/T, or the source U source
and the 1/T, an entropy-dimensioned quantity is obtained (i.e., PV/T, and U/T). In this
digraph the thermodynamic labels for the zero-degree vertices are ordered clockwise,
while the labels for the natural variables have a slanted ‘Z’ order. The two digraphs
and the following three properties can be considered the main tools of the present
metalanguage of thermodynamics, which opens with the following three properties,

Property 1 (Neighborhood property) The corner parameters are functions of their
nearby natural variables (in the standard exposition of classical thermodynamics of
simple systems),

A = A (V, T), G = G(T, P), H = H(P, S), U = U(S, V) (1)

M1 = M1(V, 1/T), M2 = M2(1/T, P/T), M3 = M3(P/T, U), S = S(U, V) (2)

From these functional relations the total differentials of the corner quantities can
easily be derived.

Property 2 (Orthogonal property) Natural variables belonging to the same arrow can
be multiplied between them to obtain either energy-dimensioned terms (E-digraph:
PV and ST) or entropy-dimensioned terms (S-digraph: U/T and PV/T). Quantities
belonging to orthogonal arrows cannot be multiplied with each other. For the same
reason, zero-degree quantities cannot be multiplied with each other.

Property 3 (Directional property) Flow towards an arrowhead (from a source to a
sink) is positive while flow towards an arrowtail (from a sink to a source) is negative.

4 Simple graphs and the thermodynamic relationships

Le us now superpose on these two digraphs a set of simple graphs (SSG = superim-
posed simple graph) which have the shape of an alphabetical capital letter: F, M, N,
and P. The thermodynamic quantities are the vertices of these letter-shaped graphs.
Each superposition gives rise to a simple graph relation, R, among the encompassed
vertices of the SSG, which will be used to characterize a thermodynamic relationship.

4.1 The SSG-N and the fundamental relationships of the zero-degree quantities

Be the E-digraph and the SSG with shape N (SSG-N) of Fig. 3, left. The well-known
relation between H and U, H = U + PV, which obeys properties 2 and 3, could be
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rewritten in a succinctly way with the following encoding relation,

REN = {H: U, (P, V)} (3)

Now, either by successive 90◦ clockwise C4 rotations or 180◦ C2 rotations of
the SSG-N [also by reflections through the PV (σPV) or ST (σST) arrows, or by
C4 + σPV,ST], it is possible to obtain the other seven encoding relations (there are
two relations for each vertex). From these relations the well-known thermodynamic
relationships among the different potentials can easily be derived. Some of them are,

C4REN = {U: A, (S, T)} → U = A + ST (4)

σSTC4REN = {H: G, (S, T)} → H = G + ST (5)

σPVREN = {G: A, (P, V)} → G = A + PV (6)

− C4σPVREN = {A: U, (T, S)} → A = U − TS (7)

The SSG-N of the S-digraph (Fig. 3, right) encodes the relation and the corresponding
thermodynamic relationship for M1 (after what has been said there is no need for an
initial equation to get started),

RSN = {M1: S, (1/T, U)} → M1 = S − U / T = (TS − U)/T = −A/T (8)

The last result (−A/T) was obtained by the aid of Eq. 7. A new relation R can be
obtained with a C4 rotation of the SSG-N, which after insertion of M1 = −A/T,
and G from Eq. 6 let us discover the explicit thermodynamic meaning for M2 (the
arrowhead is vertex P/T !),

C4RSN = {M2 : M1, (P/T, V)} → M2 = M1 − PV/T

= −(A + PV)/T = −G/T (9)

Fig. 3 Left: the SSG-N on the
E-digraph; right: the SSG-N on
the S-digraph
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The obtained relation −G/T = Y is the well-known Planck function [5]. A C2 operation
on the SSG-N of Fig. 3, right, let us uncover, after insertion of M2 = −G/T, the explicit
thermodynamic meaning for M3,

C2RSN = {M3 : M2, (U, 1/T)} → M3 = M2 + U/T = (U − G)/T (10)

4.2 The SSG-P and the differentials of the zero-degree quantities as a function
of the one-degree quantities

Be the SSG-P and the E-digraph of Fig. 4, left. By the aid of this graph-digraph
superposition together with properties 2 and 3, it is possible to encode the central
thermodynamic relationship, dU = dS·T − dV·P (i.e., dU = TdS–PdV). The encoding
relation is,

REP = {U: (S, T), (V, P)} (11)

Performing first a σ PV and then a σ ST on the SSG-P the following relations and
thermodynamic relationships can be derived,

σ PVREP = {A: (T, S), (V, P)} → dA = −dT · S − dV · P = −SdT − PdV (12)

σ STσ PVREP = {G: (T, S), (P, V)} → dG = −dT · S + dP · V

= −SdT + VdP (13)

The SSG-P and the S-digraph of Fig. 4, right, give rise to the following encoding
relation and thermodynamic relationship (P/T is the arrowhead vertex !),

RSP = {S: (U, 1/T), (V, P/T)} → dS = dU · (1/T) + dV · (P/T)

= dU/T + (P/T)dV (14)

Fig. 4 Left: the SSG-P on the
E-digraph; right: the SSG-P on
the S-digraph
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With successive SSG-P operations other relationships can be derived, among which,

σ PV/TRSP = {M1 : (1/T, U), (V, P/T)} → dM1

= −d(1/T) · U + dV · (P/T) (15)

σU/TRSP = {M3 : (U, 1/T), (P/T, V)} → dM3 = dU · (1/T) − d(P/T) · V (16)

4.3 The SSG-F and the partial differentials among the zero- and one-degree
quantities

The SSG-F and the E-digraph of Fig. 5, left, together with a result from Eq. 12, i.e.,
(∂ A/∂V )T = −P, allow to derive the following encoding relation (the 1st and 3rd
quantity in parenthesis determine the sign of the relation),

REF = {A, (V, T: P)} (17)

Now, all other partial differential relationships can be derived. Two new R relations
and their thermodynamic relationships can be obtained with a C4 operation on SSG-F
followed by a σ ST operation,

−C4REF = {U, (S, V: T)} → (∂U/∂S)V = T (18)

σ ST(−C4REF) = {H, (S, P: T)} → (∂H/∂S)P = T (19)

Another relation R and its thermodynamic relationship can be obtained with a σ PV
operation on SSG-F,

σ PVREF = {U, (V, S: P)} → (∂U/∂V)S = −P (20)

When the SSG-F is applied to the S-digraph in Fig. 5, right, the following relation
R and the corresponding thermodynamic relationship can be obtained (compare with
Eq. 18),

Fig. 5 Left: the SSG-F on the
E-digraph; right: the SSG-F on
the S-digraph
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RSF = {S, (U, V: 1/T)} → (∂S/∂U)V = 1/T (21)

Performing reflection operations on this SSG-F the following relationships can
obtained,

σVP/TRSF = {M1, (1/T, V: U)} → (∂M1/∂(1/T))V = −U (22)

σU/TRSF = {M3, (U, P/T: 1/T)} → (∂M3/∂U)P/T = 1/T (23)

4.4 The SSG-M and the maxwell relations among the one-degree quantities

The encoding of the Maxwell relations with ‘geometrical’ rules was first attempted by
Max Born. These relations concern the E-digraph only. The SSG-M on the E-digraph
of Fig. 6 and the known fact that these relations concern the partial derivatives of the
one-degree quantities (where the third one-degree quantity is held constant) allow to
write the REM relation, and its corresponding Maxwell relationship. The other three
relations can be derived performing C4 rotations of the SSG-M graph (the sign is given
by property 3, which concerns the first and the third quantity in each subset),

REM = {(P, T, V): (S, V, T))} → (∂P/∂T)V = (∂S/∂V)T (24)

− C4REM = {(T, V, S): (P, S, V)} → −(∂T/∂V)S = (∂P/∂S)V (25)

− C2
4REM = {(V, S, P): (T, P, S)} → −(∂V/∂S)P = −(∂T/∂P)S (26)

− C3
4REM = {(S, P, T): (V, T, P)} → (∂S/∂P)T = −(∂V/∂T)P (27)

Fig. 6 Left: the SSG-M on the
E-digraph
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5 Other applications

Be the Gibbs–Helmholtz relationship, [∂(G/T)/∂(1/T)]P = H, substitute G with A
and ask about the other changes this relation should undergo. To solve this problem
look at the E-digraph of Fig. 2, left, and draw a simple graph, which starts at G goes
through T and P and ends in H. Apply to this simple graph a σ ST operation and you
notice that V and U should replace P and H respectively. As the sign should be negative
on both sides of the relation the overall relation is positive. Rotating this last graph a
less-known relation between G and A can be obtained.

6 Conclusions

The use of digraphs and simple graphs and their properties not only widens the appli-
cability of the geometric mechanism that Max Born thought to be useful for the
Maxwell relations only but let us uncover the possibility to draw a metalanguage of
thermodynamics, which may preside, like a grammar, over the mathematical aspects
of thermodynamics.

The reader has noticed that the starting move was normally done by the aid of a
well-known thermodynamic relationship. Actually, once properties 1–3, the digraph
type and the superimposed simple graph are known, there is no need to know the
starting relationship, which can easily be guessed.
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